

Name: Period: Seat#:

- 1) In a photoelectron spectrum, photons of 165.7 MJ/mol strike atoms of an unknown element. If the kinetic energy of the ejected electrons is 25.4 MJ/mol, what is the ionization energy of the element? <a href="https://doi.org/10.21/10
- 2) What determines the position and the height (intensity) of each peak in a photoelectron spectrum?
- 3) Why is the distance of the energy level from the nucleus important in determining the corresponding peak position in the photoelectron spectrum?
- **4)** The ionization energy of an electron from the first energy level of lithium is 6.26 MJ/mol. The ionization energy of an electron for the second energy level of lithium is 0.52 MJ/mol.
 - **a.** Write the electron configuration for lithium.
 - **b.** Sketch the photoelectron spectrum for lithium; include the values of the ionization energies stated above and label peaks.

5) Based on the information provided below, draw a photoelectron spectrum for argon. Indicate the relative intensities and positions of all peaks.

1s ²	2s²	2p ⁶	3s ²	3p ⁶
-309.0	-31.5	-24.1	-2.83	-1.52

6) Identify the element in the photoelectron spectrum shown below. Explain your reasoning.

Explain here:

- 7) Identify if either of the following statements is correct. If yes, why. If not, why not:
 - **a.** The photoelectron spectrum of Mg²⁺ is expected to be identical to the photoelectron spectrum of Ne.
 - **b.** The photoelectron spectrum of ³⁵Cl is identical to the photoelectron spectrum of ³⁷Cl.
- 8) Is it possible to deduce the electron configuration for an atom from its photoelectron spectrum? If so, explain how. If not, explain why not.

9) Why is the peak at 0.42 MJ/mol in the K photoelectron spectrum identified as being in the 4th energy level?

Explain here: